Problem Set #4

EH6127 - Quantitative Methods

Steven V. Miller

This homework makes use of data available in {stevedata} and implies the use of {tidyverse} to answer the questions. {tidyverse} is not necessary to answer these questions though it will assuredly make the process easier. Load these two libraries to get started answering these questions.

library(tidyverse)
library(stevedata)

Comparative Public Health: The Political Economy of Human Misery and Well-Being

This homework will refer to the GHR04 data set that is available in {stevedata}. This data set is capable of (almost perfectly) recreating the analyses done by Ghobarah et al. (2004).¹ You can find out more information about the data by visiting this part of the package's website, or with the following command.

?GHRO4

Here's a little preview of these data.

GHR04

##	#	A tibble: 182	x 15						
##		country	iso3c	pubhlthexppgdp	totexphlth	hale	log_gdppc	gini	log_educ
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	StLucia	LCA	2.62	5.44	62	NA	0.41	1.68
##	2	StKitts-Nevis	KNA	3.11	6.22	59.6	NA	0.474	1.86
##	3	C-Kinshasa	COD	0.0318	3.81	34.4	6.57	0.441	1.21
##	4	Georgia	GEO	0.377	5.09	58.2	7.7	0.319	2.34
##	5	China	CHN	0.663	4.84	62.1	8.19	0.389	1.88
##	6	Sierra Leone	SLE	0.469	3.14	29.5	6.27	0.609	0.945
##	7	India	IND	0.672	4.71	52	7.45	0.356	1.61
##	8	Vietnam	VNM	0.967	4.50	58.9	7.48	0.346	2.12
##	9	Indonesia	IDN	0.622	4.36	57.4	7.95	0.349	1.70
##	10	Pakistan	PAK	0.919	4.19	48.1	7.6	0.299	1.54

¹Ghobarah, Hazem Adam, Paul Huth, and Bruce Russett. 2004. "Comparative Public Health: The Political Economy of Human Misery and Well-Being" *International Studies Quarterly* 48: 73-94. The authors make these data available but not a script that is more explicit about what exactly they are doing. Thus, the replication here is basically total but not perfect/identical. Students are responsible for reading this article in order to make sense of what is being asked in this problem set.

```
## # i 172 more rows
## # i 7 more variables: log_vanhanen <dbl>, rivalry <dbl>, polity <dbl>,
## # prvhlthexpgdp <dbl>, urban_growth <dbl>, cwdeaths <dbl>, contig_cw <dbl>
```

Answer these questions. This particular homework may seem brutal because it will demand that you read the Ghobarah et al. (2004) article (see footnote citation) and look *carefully* at the codebook for this data set.

- 1. (2 POINTS) Using the data set provided to you, and the lm() function in base R, reproduce Table I (for which public health expenditures as a percent of GDP is the dependent variable). A successful answer will involve both code and console output.
- 2. (2 POINTS) Using the data set provided to you, and the lm() function in base R, reproduce Table II (for which total expenditures on health is the dependent variable). A successful answer will involve both code and console output.
- 3. (2 POINTS) Using the data set provided to you, and the lm() function in base R, reproduce Table III (for which health-adjusted life expectancy is the dependent variable). A successful answer will involve both code and console output.
- 4. (2 POINTS) Answer one of the following prompts:
 - a. For the regression model on health-adjusted life expectancy, re-run the model (but omit Rwanda from the analysis). Show me the code you used to do this and highlight any differences in sign/significance you see comparing this model to the model above.
 - b. In the regression model you estimated for Question 3, the intercept is "statistically significant." What is that value for the intercept actually communicating? Does it make sense?